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Abstract
The normal-mode spectrum of quasiregular structures has peculiar properties
which have stimulated a great deal of research. The current situation is
critically examined for the case of elastic waves. So far most of the research
in this field appears to be theoretical. The roles of boundary conditions and
of the constitutive material blocks are discussed, as well as the conditions
required for reliable calculations of the topological properties of the spectra.
The different quasiregular sequences more commonly studied may have
significantly different formal properties, a fact not often considered. The
relationship to other fields of physics is pointed out, the need for more
experimental work is stressed, and, generally speaking, some directions for
further research in the field are suggested.

1. Introduction

The traditional classification of solids into crystalline and amorphous underwent substantial
revision due to the discovery of icosahedral alloys [1, 2] having symmetries forbidden for
ordinary crystals. These systems, known as ‘quasicrystals’, are not periodically ordered like
the ordinary crystals, but they are not disordered or amorphous systems. They exhibit a
well defined discrete point group symmetry, like ordinary crystals, but incompatible with
periodic translational order. The quasicrystals have a kind of translational periodicity known
as quasiperiodicity. In fact they do not have long-range periodic translational order, but they
do possess ‘long-range positional order’. Some one-dimensional (1D) ‘quasicrystals’ have
been found in Al–Cu–Co, Al–Ni–Si, and Al–Cu–Mn [3]. These systems have a ‘periodic’
in-plane structure, but the planes are stacked aperiodically following a Fibonacci sequence.
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Different ways to obtain an aperiodic array of atoms in one dimension from a periodic
square lattice in two dimensions can be found in [4]. This cut-and-projection method can be
further generalized to crystalline approximants in two and three dimensions of quasicrystals.
On the other hand, for almost 30 years research on quantum nanostructures has been very
intensive [5,6]. As a result, epitaxial growth techniques have been developed and it is possible
to obtain samples with prescribed design parameters and having high quality levels. These
techniques have also been used to grow non-periodic digital heterostructures [7], and even
quasiperiodic heterostructures [8–11]. The discovery of the quasicrystals and the realization
of these quasiregular heterostructures stimulated in the early 1980s a good deal of theoretical
study [12–22]. In these studies a linear one-dimensional chain of atoms was considered, and
a study was made of the electronic states in a tight-binding model having one state per atom
and having an on-site energy which can take one of two values EA or EB according to a
prescribed sequence, while the hopping interaction is not changed. Some variations of this
model were also considered. When the sequence follows a self-replicating rule the system
is quasiregular or quasiperiodic, and the spectrum has novel and intriguing properties which
resemble those of a simple Cantor set [23]. The most frequently studied case has been that of
the Fibonacci sequence, for the reasons explained above, but other cases have also been studied
and will be discussed here. The models could change—having for example the same atomic
level but different hopping interactions—or one could study a different physical situation,
like the longitudinal phonons in a one-dimensional chain having atomic masses mA and mB

following the prescribed sequence. Basically all the systems considered in the former works
amounted to academic problems, but the peculiar features and trends exhibited by the energy
spectra pointed to the existence of some interesting basic features in the properties of non-
periodic but quasiregular systems. This generated new research considering ‘real’ systems
described in terms of simple models [24–27], and was also aided by the actual production
of quasiregular heterostructures [8–11]. The work on different aspects of the spectra of
quasiregular heterostructures has continued to be very active and many references can be found
in [28,29]. These works have considered further aspects of the academic problems, but in many
cases they have centred on actual physical systems, with varying degrees of elaboration in the
models employed [30–54]. As compared with the abundant theoretical work, the experimental
work associated with quasiregular systems remains scarce [33, 55–57].

On the other hand, many interesting mathematical studies of the physical properties of
quasiregular systems have been published in the last few years [58–65]. In order to illustrate
the main features of the quasiregular systems we shall concentrate on the elastic wave problem.
In this way, it will be possible to study the physical properties of the quasiregular systems in
a somewhat more realistic way than with strictly one-dimensional chains.

In section 2 we shall introduce some of the more common sequences which generate
quasiregular systems. In section 3 we shall briefly discuss the different mathematical methods
and theoretical approaches employed in the study of quasiregular systems. In section 4 we
shall discuss the properties of elastic waves in quasiregular systems. Final comments and open
questions will be presented in section 5.

2. Quasiregular sequences and systems

The historically first quasiregular sequence was introduced by Lorenzo Fibonacci in the
thirteenth century. This produced the Fibonacci numbers according to the sequence

Fn = Fn−1 + Fn−2. (1)
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Table 1. Substitution rules, and some low-order generations, for the most frequently studied
quasiregular sequences. The first term is always assumed to be A.

Sequence ξ(A) ξ(B) ξ(C) ξ(D) Generation

Fibonacci AB A S6 = ABAABABAABAAB

Thue–Morse AB BA S4 = ABBABAABBAABABBA

Period doubling AB AA S4 = ABAAABABABAAABAA

Circular CAC ACCAC ABCAC S2 = ABCACCACABCAC

Rudin–Shapiro AC DC AB DB S4 = ACABACDCACABDBAB

Given the first two numbers, equation (1) determines the value of the generic number Fn

for the nth generation in the sequence. It can be shown that

lim
n→∞

Fn

Fn−1
= 1 +

√
5

2
= τ (2)

where τ is the golden ratio.
It is easy to see how a heterostructure can be generated from the Fibonacci sequence. Let

A be a slab of a given material, or materials, and B a slab of a different material, or materials.
By expressing equation (1) as the juxtaposition of Fn−1 and Fn−2 we obtain

Fn = Fn−1 ⊕ Fn−2, (3)

giving the resulting structure for generation n formed with A- and B-slabs, and having as
starting seeds F0 = A and F1 = B, for example. In this way it is possible to build a quasiregular
heterostructure following a prescribed quasiregular sequence. This heterostructure is not a
regular periodic one, but the prescription for higher generations contains a self-replicating law.
Both A and B can be simple or composite, i.e. consisting of more than one slab of different
materials [8–11].

The mathematical structure of the quasiregular sequence determines some basic properties
and some theorems [59,65], which provide a formal basis on which to study the key features of
the spectra of the quasiregular heterostructures. In order to describe quasiregular sequences it
is quite common to introduce an alphabet [65] A formed by a number of letters allowing one
to form words, and from them the infinite quasiregular heterostructure is formed. It is then
only needed to define the first term and a substitution rule mapping the alphabet A onto a set
of words of finite length [65]. In the case of the Fibonacci sequence [64, 66] the alphabet A
consists of two letters A and B, and the substitution rule is given by

ξ(A) = AB, ξ(B) = A, (4)

mapping A onto the set of words of finite length {AB, A}. It then suffices to define the first
term S1 = A and successive applications of equation (4) yield the successive generations. This
can be defined even more generally; for example AB in equation (4) can be replaced by ABm,
m being an integer >1, although m = 1 is the more usual case in physics.

Many other quasiregular sequences can be found in this way, with different alphabets
and substitution rules. The most frequently studied cases are the Thue–Morse [21,64,66,67],
Rudin–Shapiro [21,64–66,68], period-doubling [21,62,64], circular [21,64–66], binary non-
Pisot [64, 66, 69], and ternary non-Pisot [64, 66, 69] ones. Table 1 summarizes for the most
common of these sequences the substitution rules and gives typical examples of a low-order Sn

for each one. By convention we have taken S1 = A and we have applied successively the rule
Sn = ξ(Sn−1) following the prescriptions given in the table for each case. In this way it is
possible to see the different degrees of complexity in the quasiregular heterostructures.
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3. Mathematical methods and techniques

In order to study the spectra of quasiregular sequences several mathematical methods have
been employed. Among them the transfer matrix methods have played a very important role.
These methods are given many different names in the literature. If one writes down the form
of the eigenfunction as a linear combination of given basic functions, often plane waves, half
of them propagating, or decaying, in one direction and the other half in the opposite direction,
then the transfer matrix is defined [70,71]; it transfers the coefficients of this combination from
one point to another. Another different concept of the transfer matrix is as that matrix which
transfers the function itself and its derivative with respect to some coordinate from one point to
another. A preliminary account of this transfer matrix was given in [72] for the case of constant
potential. The mathematical properties of this transfer matrix were studied in detail in [73]
with emphasis on the Schrödinger equation, although the formal theory is equally valid for any
linear second-order differential equation and for a set of coupled linear first-order differential
equations. Transfer matrices have been very useful in the study of various exactly solvable
models in statistical and quantum mechanics [74–76]. It is then quite natural to use transfer
matrices to study the spectra of quasiregular heterostructures. Thus if ψ and ψ ′ are known at
some initial point z0, then for any z,[

ψ(z)

ψ ′(z)

]
= M(z, z0)

[
ψ(z0)

ψ ′(z0)

]
. (5)

This defines M as the transfer matrix. For discrete systems described in terms of finite-
difference equations, like a vibrating linear chain, the relationship defining M involves the
amplitude at two different consecutive points. Thus[

ψ(n)

ψ(n − 1)

]
= M(n, n0)

[
ψ(n0)

ψ(n0 − 1)

]
. (6)

It must be stressed that all the fundamental mathematical studies of the properties of
quasiregular systems apply to cases with a 2 × 2 unimodular transfer matrix. Thus it is clear
that as regards the physics this approach is restricted to a class of problems in which there
is only one amplitude or component. In this category fall problems such as: electrons states
in the one-band tight-binding model; and purely longitudinal or purely transverse phonons of
linear atomic chains following a quasiregular sequence. For continuous systems described by
differential equations, similar problems would be: the one-band effective-mass Schrödinger
equation; the Poisson equation for a simple dielectric model (plasmons in a phenomenological
model of the electron gas or polar optical modes in a simple model for ionic crystals); pure
transverse acoustic modes; etc. Another way to study the mathematical properties of the spectra
of quasiregular systems has been through the so-called trace map [60, 62, 64, 65, 77–89].

To arrive at this concept we must note that the problem under study has two ingredients:

(i) the nature of the quasiregular sequence, as defined in the initial alphabet and the
substitution rules; and

(ii) the simple nature of the problem defined on the given quasiregular sequence, which means
that we are dealing with unimodular 2 × 2 transfer matrices.

In this case the application of the Cayley–Hamilton theorem

M2 − (tr M)M + I = 0 (7)

yields the following relations [90]:

tr(M1M2) = tr(M1) tr(M2) − tr(M−1
1 M2), (8)

tr(M2) = (tr(M))2 − 2, (9)
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tr(M1M2M1M3) = tr(M1M2) tr(M1M3) − tr(M2) tr(M3) + tr(M2M3), (10)

tr(M2
1M2) = tr(M1) tr(M1M2) − tr(M2), (11)

M3 = (tr(M))2M − M − tr(M)I, (12)

tr(M3) = (tr(M))3 − 3 tr(M). (13)

From these relations we can build now the trace map. Denote the nth generation Sn

of a given quasiregular sequence by An/Bn, when the starting generation is S1 = A/B and
associate a transfer matrix denoted by An/Bn with the nth generation in each case. Then the
substitution rules for the sequence induce recurrence relations between the transfer matrices
for the successive generations. For instance, in the Fibonacci sequence, from equation (4) we
obtain

An = Bn−1An−1, (14)

Bn = An−1. (15)

These recurrence relations can be very useful in practice in doing actual calculations, but
they also prove useful for allowing one to deduce a similar relation between their traces. We
define in all cases

xn = tr(An), yn = tr(Bn). (16)

The application of the substitution rules makes it necessary, in general, to introduce new
traces. In the Fibonacci case it is necessary to introduce another trace:

zn = tr(AnBn) (17)

and since from (14)–(15)

xn+1 = zn (18)

yn+1 = xn (19)

another recurrence relation for zn is needed. In general this process brings into the analysis
further traces, but the relations (7)–(13) can be used to break the chain. In [66] it was proved
that for simple problems it is always possible to limit the chain to a finite number of matrices
and traces. In the Fibonacci case, from (17) and (11) and making use of the cyclic invariance
of the trace, it is readily obtained that

zn+1 = xnzn − yn. (20)

Equations (18)–(20) constitute a limited trace map for the Fibonacci sequence and involve
a finite number of traces corresponding to a finite number of matrices (three in the present
case), namely An, Bn, and AnBn. The corresponding finite set of words {A, B, AB} is said to
constitute the lexicon of the sequence [64]. The form of the trace map is not unique and can be
cast in different ways. The important fact is that simple problems always have an associated
trace map [66]. It is customary to cast the trace map in a more concise form which we shall
call the compact trace map.

In the Fibonacci case, by eliminating y- and z-terms, equations (18)–(20) can be condensed
into a recurrence formula for xn, given by

xn = xn−1xn−2 − xn−3, (21)

which is the compact trace map for the Fibonacci sequence.
This case serves to illustrate the concept, although more general and complicated situations

can be found. A detailed analysis is given in [29].
Decimation techniques based on the renormalization group have also been used

[19, 28, 31].
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For many interface systems, the Green function techniques have been very useful [91–93].
Quite recently a technique blending the surface Green function matching and the transfer
matrix methods has been put forward [94] and employed to study ‘real’ quasiregular
systems [50, 52–54]. The formal aspects of the method are presented in [52, 94] and will
not be repeated here.

It is convenient now to consider a basic property of the eigenvalue spectrum of a problem,
assumed to be simple in the sense explained before. Consider, for instance, the electronic state
eigenvalues of a periodic superlattice. The spectrum consists of minibands and is piecewise
continuous. In fact it is absolutely continuous, this meaning that given any point of the spectrum
and any small interval about this point, all the points of the interval belong to the spectrum.
The obvious exceptions are the miniband edges, for which the intervals must be one sided,
just as in the case of the free-electron spectrum for the lower bound of the one band of states.
The result is that on the real line the points of the spectrum form a one-dimensional set. Let
us consider now a different situation: given any point of a spectrum, in any arbitrarily small
interval about it there are always points of the spectrum, but not all points of the interval belong
to it. Then the spectrum is singular continuous, this meaning that its points no longer cover
the intervals of the real line densely as in the absolutely continuous case. These qualitative
features can be complemented with some more precise characteristics. In the case of the
absolutely continuous spectrum, a sampling of the set gives that in the neighbourhood of all
the points the number of points is always proportional to the interval width. On the other hand,
in the singular continuous spectrum, the number of points is proportional to a given power of
the interval width. This power coefficient is the scaling index characterizing the point in the
set. This fundamental property makes the spectra of some quasiregular systems different from
that of a regular superlattice. In this way, given a quasiregular sequence, the Bovier–Ghez
theorem [65] establishes that if some conditions are satisfied, then the spectrum of any simple
problem defined on it is singular continuous. In this analysis the structure of the trace map
plays a central role. By studying this it can be found that the periodic and Rudin–Shapiro
sequences given in table 1 do not satisfy the conditions of the theorem. Thus one cannot prove
whether the spectrum is or is not singular continuous. In fact, for the superlattice it is known
to be absolutely continuous.

All the problems considered here are described by linear equations, but the mathematical
analysis is based on the study of the trace maps, which consist of non-linear equations. Thus
there are some affinities with the study of chaotic phenomena described in terms of non-linear
dynamics. This similarity is particularly clear with respect to the topological properties of
singular continuous spectra. In an abstract way the term event may mean either finding an
eigenvalue in an interval of the real line or having a dynamical trajectory pass through an
elementary domain in a phase space. In the nomenclature employed by some authors [12] the
trace map is defined as the dynamical system under study. The fact, mentioned above, that
singular continuous spectra do not cover the intervals of the real axis densely means that such
spectra are fractal, with a dimension less than unity. Abundant examples of fractal analysis
can be found in the literature on non-linear dynamics [95–98]. We shall present here a brief
resume of some basic definitions and relations employed in the study of quasiregular systems.

Let {ωi} (i = 1, 2, . . . , N) be a set of points on the real axis which we shall call the
spectrum, although it could be any geometrically defined set of points. Consider the interval,
or set of intervals, occupied by the spectrum, define elementary intervals (one-dimensional
boxes) of size �, and cover the entire interval, or set of intervals, with N (�) boxes of size �.
Let q be a continuous parameter ranging from −∞ to +∞ and pj be the fraction of points in
box j .
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The generalized information of order q is defined as [98]

I (�, q) = 1

1 − q
log

N (�)∑
j=1

p
q

j , (22)

and from this the generalized box-counting dimension

Dq = − lim
�→0

I (�, q)

log(�)
. (23)

Different concepts of dimension are defined in the literature, but for the purposes of this
work it suffices to consider this and the simple box-counting dimension Dbc defined as follows.
We consider the spectrum again, and cover it with M(�) boxes of size �. Then [97, 98]

Dbc = − lim
�→0

log[M(�)]

log[�]
. (24)

The difference between N (�) and M(�) is that the latter, by definition, does not include
any empty box, i.e. with no point of the spectrum in it. It can be shown [97, 98] that

Dq=0 ≡ D0 = Dbc (25)

and this, under rather general conditions, is also equal to the simple Hausdorff dimension
[95–98].

In the simplest, ideal case, Dq does not depend on q and we have just one fractal
dimension D0.

A property usually claimed for the spectra of quasiregular systems is that of self-similarity.
It is important to stress the link of this property with the fractal analysis [95]. In a simple fractal
object, if one looks at some fraction of it at some level of magnification, it is identical to any
other fraction at some other level of magnification. Thus, after magnification it is impossible to
tell which length scale one is seeing because there are no differences. It is proved [97] that self-
similar sets have a fractal dimension Dq independent of q. This situation is rather exceptional
and the more general situation must be described in terms of a multifractal analysis [95–97].

In order to do this, let pj be the fraction of points of a given set which are contained in
the j th cell of size �j . It is assumed that pj (�j ) satisfies a scaling relation of the form

pj (�j ) = k�
αj

j , (26)

where k is a proportionality constant and αj is the scaling index for cell j . The different cells
are now labelled to indicate that one is focusing on different regions of the spectrum, but the
problem is analysed in the limit in which all �j → � → 0. Then the number of cells N (�)

increases and the distribution of values of the αj becomes continuous, so n(α) dα is the number
of cells having a scaling index between α and α + dα.

At this stage the crucial assumption is made that n(α) scales with the size of the cells
according to a power law of the form

n(α) = Ke−f (α). (27)

The proportionality constant K is irrelevant and f (α) can be interpreted as the fractal
dimension of the partial set of points with scaling index α. The characteristic exponent
f (α) [14] is of central importance in the multifractal analysis and is related to Dq . The
basic properties of a multifractal object are

(i) Dq varies with q;
(ii) the scaling index α takes different values and, correspondingly, so does f (α); and
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(iii) the object is no longer self-similar although some particular choice in the way of effecting
a magnification might give an impression of self-similarity which does not hold up when
more careful tests are performed [96].

The following relations can be proved [95–98] among Dq , α, and f (α):

f (α) = q
d

dq
[(q − 1)Dq] − (q − 1)D(q) (28)

α(q) = d

dq
[(q − 1)Dq] (29)

D(q) = 1

q − 1
[qα(q) − f (α(q))]. (30)

It can also be proved in a very general way that

Dmax = D(−∞) � 1 Dmin = D(+∞) � 0. (31)

Moreover, α spans a range of values with lower and upper bounds [97]

αmin = Dmin αmax = Dmax (32)

where f (α) > 0.
The analysis starts from a given spectrum, resulting from an experiment or calculation,

and one directly evaluates Dq numerically, and then, in principle, from (27)–(29) it could be
possible to evaluate f (α). Practical aspects of the numerical calculation of D(q) and f (α)

were discussed in [29].
It should be stressed that the theory of all the mathematical and formal properties of

quasiregular systems holds for infinitely large sequences, and this never actually happens in
experiments or calculations. In practice we always deal with a ‘high’ but finite realization.
A finite realization is the nth generation which results from applying the substitution rule n

times and this is what one grows experimentally and what one calculates. If n is sufficiently
large, one can assume that the description of the properties of the quasiregular systems will be
reasonably accurate.

The set-up of the calculations raises the question of the boundary conditions. It is possible
to take a finite generation Sn of the quasiregular system under study, to impose periodic
boundary conditions, and to perform the analysis for a superlattice having Sn as the period.
In other cases we can consider the finite Sn-system with different boundary conditions at the
limiting interfaces. The alphabet letters entering in the sequence controlling the quasiregular
systems grown experimentally can be composed of just one material [10] or of two different
materials [8, 9, 11]. All these factors can have an influence on the analysis of the physical
properties of quasiregular systems.

4. Elastic waves in quasiregular systems

Elastic waves constitute a very good testing ground for studying the properties of the spectrum
of ‘real’ quasiregular heterostructures. In the range of validity of the elastic theory we shall have
a rigorous description of the systems considered and we shall be able to study the influences of
the different boundary conditions, constituent materials, etc, quoted at the end of the previous
section.

In studying the basic properties of quasiregular systems it is possible to consider the
materials isotropic or having high symmetry (cubic or hexagonal) and then study a high-
symmetry direction. This will simplify the calculations without diminishing the physical
insight of the study. In this way it is possible to consider quasiregular systems grown
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along a given spatial direction, but having a perfect periodicity in the planes perpendicular
to the growth direction. If the waves propagate along the x-direction, the transverse elastic
displacement along the y-direction is uncoupled from the elastic displacements along the
x- and z-directions. In this way the study of the elastic waves gives us a close parallel to
the one-dimensional versions of the ‘simple’ models discussed before, the transverse uy-
displacement being described by a linear second-order differential equation. Associated with
the same physical problem we have a more complicated situation linked to the sagittal waves
having (ux, uz) coupled displacements, and described by two coupled linear second-order
differential equations. In all cases, there are matching boundary conditions to be imposed at
the coupling interfaces, expressing the continuity of the vibrational amplitudes and the normal
components of the stress tensor. Note that these may, and often are, different from the end
boundary conditions, here simply called boundary conditions, at the extremes of the finite
realization of the heterostructure.

Some studies on the Raman spectra and transmission coefficients of the elastic waves in
Fibonacci superlattices have been made in the last few years [27,99–101]. In [46] the sagittal
elastic waves in Fibonacci superlattices having periods up to that of the seventh generation
were studied. It was found there that the structure of the frequency spectrum, as seen in the
one-dimensional calculations, and presenting a succession of principal gaps and a ‘self-similar’
structure reflected in the presence of the secondary gaps, was not seen in the dispersion relations
considered there. That was mainly due to the mixing of the two polarizations, one longitudinal
and one transverse, entering the sagittal waves and to the low order of the generations included
in [46]. It is interesting to note here something about the representation of the spectra. In the
case of a regular superlattice the customary representation for the spectrum of the elastic waves
is as a dispersion relation—that is to say, the frequency eigenvalues versus the wavevector in
the growth direction, or in any other given direction. On the other hand, in the studies of
one-dimensional models of quasiregular heterostructures it is quite common to represent the
frequency eigenvalues versus a label which takes successive integral values and serves to
identify the eigenvalues. Although quite often this is referred to as a dispersion relation, that
must be understood as explained above.

In order to see the spectrum of the elastic waves in quasiregular heterostructures in ‘real’
systems but including higher generations, in [47] hexagonal crystals of the 6mm class were
chosen. The study was centred on the transverse elastic waves of Fibonacci superlattices formed
by hexagonal crystals of the 6mm class with the geometry associated with the existence of
Bleustein–Gulyaev waves [102–104] in order to see the possible effects of the piezoelectricity
on the transverse elastic wave spectrum. In that case the c-axis is parallel to the z-direction
while y is the direction normal to the interface, and x is the propagation direction. In this case
there is a decoupling between the motion along the x- and y-directions, corresponding to the
sagittal waves studied in [46] and the motion along the z-direction due to the symmetry [104].
The transverse waves associated with the elastic displacement uz were then studied in [47].
The Fibonacci superlattices studied there were obtained by stacking recursively along the
y-direction with two generators, blocks A and B, mapping the mathematical rule in the
Fibonacci sequence as given in table 1.

The materials considered were CdS and ZnO. The blocks A and B were formed by
(CdS)i/(ZnO)j layers and (CdS)i/(ZnO)k layers respectively. The thicknesses of the different
layers were d(CdS) = 17 Å and d(ZnO) = 42 Å for block A and d(CdS) = 17 Å
and d(ZnO) = 20 Å for block B. In this way structures similar to the experimentally
grown Fibonacci superlattices [8] were considered. Different realizations of the Fibonacci
superlattices with increasing generation number, up to the thirteenth generation including 754
material slabs, were studied. Because of the finite size of the quasiregular systems considered,
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in spite of the high number of material slabs included, two types of system with different
boundary conditions were studied:

(a) infinite periodic superlattices having as period a given Fibonacci sequence; and
(b) a finite structure formed by a given Fibonacci sequence, with stress-free bounding surfaces.

The results thus obtained can be illustrated in a graphic way. Figure 1 gives a range
of frequency values versus its ordering number for increasing frequencies, for periodic
superlattices having as period the seventh (42 slabs), tenth (178 slabs), and thirteenth (754
slabs) generations of the Fibonacci sequence, respectively, corresponding to the superlattice �

point. The figure displays the customary series of primary and secondary gaps for all the
generations included in the study. Thus, some kind of ‘self-similar’ structure is then present
in the frequency spectrum. The same structure was obtained for the qD = π/2 and qD = π

points, D being the superlattice period.
In figure 2 the same information as presented in figure 1 is given but for the finite Fibonacci

generations, with the same number of slabs as in figure 1, having stress-free bounding surfaces.
The same structure of the frequency spectrum is seen in figure 2 although the eigenvalues exhibit
differences from those of the periodic case, induced by the different boundary conditions. The
isolated points seen in the primary gaps, and also present in the secondary gaps, correspond to
localized states. This can be seen in figure 3 representing the local density of states (LDOS) in
arbitrary units of the ω = 14.37 GHz mode of the finite tenth-generation Fibonacci superlattice
versus the length of the multilayer system, having 55 A-blocks and 34 B-blocks, thus totalling
a length of 4503 Å. The rapid attenuation of the mode when going away from the left surface
is evident in the figure.

It was found that the inclusion of piezoelectricity did not modify the structure of the
spectrum obtained in the purely elastic case, and only changes in the numerical values of the
frequencies were produced, as a consequence of the different matching boundary conditions
used when taking into account the piezoelectric coupling.

Thus it was found that the transverse elastic waves constitute a quite close parallel with
the theoretical studies for one-dimensional ‘simple’ systems, and contrast with the case
of the sagittal elastic waves [46], where the coupling of the different components of the
elastic displacements makes the identification of the characteristics of the spectrum more
difficult for the low-order generations studied in [46]. It was then clear that the study of
the frequency spectrum of quasiregular systems for the sagittal elastic waves would be quite
costly in computer time. This can easily be understood because when using Green function
methods as in [46], the Green function of the system of N interfaces would be an Nn × Nn

matrix, n being the size of the Green function matrices of the different materials forming
the system, which depends on the model in question. If Nn is a large number, then heavy
requirements are imposed on computer memory and time in inverting large matrices, which
must be performed many times to obtain the frequency spectrum. This problem was overcome
with the method introduced in [91,94] blending the transfer matrix and surface Green function
matching methods. In this way one deals in practice with a two-interface problem instead an
N -interface one, which reduces substantially the memory and computer time required. Instead
of inverting many times the Nn × Nn matrices, one multiplies many times the N matrices of
size n × n and then inverts a 2n × 2n matrix.

By using this method, more general studies of the elastic waves in quasiregular systems
were made [50,52,53]. In these studies the sagittal elastic waves for higher generation orders
were studied, and other quasiregular sequences, like the Thue–Morse and the Rudin–Shapiro
ones, were considered. These other sequences were not studied previously due to the fact
that the number of terms in the sequence goes as 2n, n being the order of the sequence, thus
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Figure 1. Transverse elastic wave frequencies ordered by increasing value versus the ordering
number of the modes at the � point for periodic Fibonacci superlattices having as period: (a) the
seventh generation; (b) the tenth generation; (c) the thirteenth generation. For the description of
the constituent slabs, see the main text.
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Figure 2. As figure 1, but for finite Fibonacci multilayers with stress-free surfaces.
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Figure 3. The LDOS in arbitrary units of the 14.37 GHz mode of the finite tenth-generation
Fibonacci multilayer versus the length of the multilayer.

increasing the number of terms much more quickly than the Fibonacci sequence. The new
technique allows now the study of systems with a high number of terms in a more economic
way.

In [52] the Fibonacci and Thue–Morse systems were formed with two generators,
blocks A and B, having (AlAs)i /(GaAs)j layers and (AlAs)i /(GaAs)k layers respectively. The
thicknesses of the different layers were d(AlAs) = 17 Å and d(GaAs) = 42 Å for block A

and d(AlAs) = 17 Å and d(GaAs) = 20 Å for block B.
The Rudin–Shapiro systems were formed with four generators, blocks A–D. The A-

and B-blocks were the same as in the previous cases, while the C-block contained
(AlAs)j /(GaAs)i layers and the D-block contained (AlAs)k/(GaAs)i layers. The thicknesses
of the different layers were d(AlAs) = 42 Å and d(GaAs) = 17 Å for block C and
d(AlAs) = 20 Å and d(GaAs) = 17 Å for block D.

The study included Fibonacci generations ranging from the second to the 14th, including
up to 1220 slabs of constituent materials in the case of the 14th generation. The Thue–Morse
and Rudin–Shapiro structures ranged from the first to the ninth, including up to 1024 slabs of
constituent materials in the case of the ninth generation.

All the systems considered in [52] were finite structures with stress-free bounding surfaces.
Figure 4 presents a range of frequencies versus its ordering number for increasing

frequencies of transverse elastic waves at the �̄ point of:

(a) the 14th Fibonacci generation;
(b) the 9th Thue–Morse generation; and
(c) the 9th Rudin–Shapiro generation.

It is evident in the figure that all the structures exhibit spectrum fragmentation, manifested
by the presence of primary and secondary gaps. The isolated points in the gaps are localized
states, due to the existence of stress-free bounding surfaces. The figure evidences the
similarities of the Fibonacci and Thue–Morse spectra, while the Rudin–Shapiro structure
presents a spectrum showing clear differences.
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Figure 4. Transverse elastic wave frequencies ordered by increasing value versus ordering number
of modes for the �̄ point of finite multilayers with stress-free surfaces: (a) 14th Fibonacci
generation; (b) 9th Thue–Morse generation; and (c) 9th Rudin–Shapiro generation.
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Figure 5 presents the same information as figure 4 for the sagittal elastic waves of the
14th Fibonacci generation. The spectrum fragmentation is not easily seen in figure 5(a),
as found in [46], despite having higher generations than those in [46]. But at the �̄ point the
longitudinal and transverse contributions to the sagittal waves can be decoupled and this allows
one to see the spectrum fragmentation. Figure 5(b) gives this information for the longitudinal
part of the sagittal elastic wave, while figure 5(c) displays the information for the transverse
part of the sagittal elastic wave. Figures 5(b) and (c) exhibit the spectrum fragmentation
in a clear way, which is not the case for lower generations, as found in [46]. A similar
situation was found in [52] for the sagittal elastic waves in Thue–Morse and Rudin–Shapiro
heterostructures. In any case the conclusions presented in [46] for low-order generations are
valid, and spectrum fragmentation will not appear in situations where wave mixing is quite
strong, like that occurring for arbitrary propagation directions in anisotropic crystals.

In spite of the apparent self-similar structures seen in the previous figures, it can be seen
that this is not true. This is evident in figure 6 giving the same information as was presented
in figure 4 for the 14th Fibonacci generation, but for different ranges of frequencies. These
magnifications show the existence of primary and secondary gaps as before, but no self-
replicating structure is present in any of the sequences. This can also be seen in Thue–Morse
and Rudin–Shapiro heterostructures [52].

The character of the different modes is reflected through the LDOS versus the length of
the multilayer. Figure 7 depicts the LDOS in arbitrary units of the transverse elastic waves
with frequencies (a) 34.5, (b) 36.1, and (c) 37.0 GHz, for the sixth Thue–Morse generation,
including 128 constituent materials, versus the length of the multilayer system. The extended
character of the (a) and (c) modes is evident, while the localized character of the (b) mode is
clear from the rapid attenuation of the mode, when receding from the right surface. Similar
trends were found for the Fibonacci structures [52].

Figure 8 shows the LDOS of the transverse elastic waves with frequencies: (a) 36.9,
(b) 37.8, and (c) 38.2 GHz, of the sixth Rudin–Shapiro generation, including 128 constituent
materials, versus the length of the multilayer system. The marked differences in behaviour
between the various modes and the equivalent modes obtained for the Fibonacci and Thue–
Morse sequences are evident in this case.

Other studies on the influence of the boundary conditions and the constituent building
blocks were made in [50, 53]. In [53] two types of building block were considered. The first
one, denoted as case I, had the same building blocks as those considered in [52]. The second
case, denoted as II, considered A-blocks formed by GaAs layers and B-blocks formed by AlAs
layers with thicknesses d(AlAs) = 17 Å and d(GaAs) = 42 Å, respectively, for the Fibonacci,
Thue–Morse, and Rudin–Shapiro systems considered there. The Rudin–Shapiro II structures
had C-blocks formed by GaAs layers and D-blocks formed by AlAs layers, with thicknesses
d(AlAs) = 20 Å and d(GaAs) = 17Å.

Different quasiregular generations were studied including up to 2048 constituent material
slabs. Different mathematical tools were employed to study the frequency spectrum. Because
the different systems had different numbers of constituent slab materials, the frequency spectra
were presented by means of the normalized integrated density of states (NIDOS), normalized
to unity. This gives a completely equivalent representation and provides a better picture of the
results of the different structures containing different numbers of material slabs, and thus of
frequency eigenvalues.

Figure 9 gives the NIDOS as a function of the frequency for two realizations of a 13th
Fibonacci generation corresponding to case I. The solid curve corresponds to the � point
of a periodic superlattice having the Fibonacci sequence as the period. The dashed curve
corresponds to the κ = (105, 0) m−1 point of the finite sequence with stress-free bounding
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Figure 5. Elastic wave frequencies ordered by increasing value versus ordering number of modes
for the �̄ point of a finite 14th Fibonacci generation with stress-free surfaces: (a) sagittal elastic
waves; (b) the longitudinal contribution to sagittal elastic waves; (c) the transverse contribution to
sagittal elastic waves.
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Figure 6. Transverse elastic wave frequencies ordered by increasing values versus ordering number
of modes for the �̄ point of a finite 14th Fibonacci generation with stress-free surfaces: (a) the
frequency range 20 GHz � ω � 25 GHz; (b) the frequency range 30 GHz � ω � 40 GHz.

surfaces. It is easy to see that in spite of having chosen not only different boundary conditions,
but even different κ-points in the two cases, the spectra in both situations are almost identical,
and they exhibit the same features. The largest differences correspond to the low-frequency
limit, as can easily be understood. At the � point the frequency starts from zero, whereas for
the non-zero κ-point the frequency starts at a non-zero value.

Figure 10 presents the same information for two different realizations of the 13th Fibonacci
generation in case II, for the κ = (105, 0) m−1 point of the finite sequence with stress-free
bounding surfaces. The dashed curve represents the case in which the A-block corresponds to
GaAs and the B-block corresponds to AlAs, whereas the solid line corresponds to the reverse
situation. It can be seen that the overall features are the same, although some small differences
are evident in the figure. Not so many gaps are present as in the previous figure. This is a
consequence of the smaller number of material slabs included in the generation.
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Figure 7. The spatial dependence of the LDOS in arbitrary units, for frequencies of: (a) 34.5 GHz;
(b) 36.1 GHz; and (c) 37.0 GHz, for transverse elastic modes of the finite sixth Thue–Morse
generation.
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Figure 8. As figure 7, but for: (a) 36.9 GHz; (b) 37.8 GHz; and (c) 38.2 GHz, transverse elastic
modes of the finite sixth Rudin–Shapiro multilayer.
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Figure 9. The NIDOS as a function of the frequency for the 13th Fibonacci generation, case I.
Solid curve: the � point of the infinite periodic system. Dashed curve: the finite system with
stress-free bounding surfaces and κ = (105, 0) m−1.
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Figure 10. As figure 9, but for case II of the 13th-Fibonacci-generation finite systems with stress-
free bounding surfaces and κ = (105, 0) m−1. Dashed curve (A ←→ GaAs, B ←→ AlAs); solid
curve (A ←→ AlAs, B ←→ GaAs).

As a complement to the study of the frequency spectra a fractal analysis of them was also
performed in [53] by means of the generalized box-counting dimension D(q) discussed in
section 3.

Figure 11 gives D(q) for the systems considered in figures 12, 13. It is seen that the
behaviour is the same for all systems, and that the +∞ limits are very close for the I systems and
the two II systems, although there is a clear difference between the limiting values for the I and II
types. It was also seen in [53] that the Thue–Morse systems, although exhibiting differences
with respect to the Fibonacci ones, had quite similar trends, as previously seen in [52].
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Figure 11. The generalized box-counting fractal dimension D(q) for the 13th Fibonacci generation
(•: infinite periodic case I; : finite case I; �: finite case II (A ←→ GaAs, B ←→ AlAs); �:
finite case II (A ←→ AlAs, B ←→ GaAs)).
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Figure 12. As figure 9, but for the tenth-Rudin–Shapiro-generation finite system with stress-free
bounding surfaces. Solid curve: case I. Dashed curve: case II (A, C ←→ GaAs; B, D ←→
AlAs).

Figure 12 gives the NIDOS as a function of the frequency for two realizations of the tenth
Rudin–Shapiro generation with stress-free bounding surfaces. The solid curve corresponds to
case I with 2048 constituent material slabs, and the dashed line corresponds to case II having
1024 constituent material slabs. In this case the two different types exhibit quite different
features, more pronounced than those seen in the Fibonacci and Thue–Morse structures.
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Figure 13. As figure 11, but for the tenth-Rudin–Shapiro-generation finite structure with stress-free
bounding surfaces ( : case I; �: case II (A, C ←→ GaAs; B, D ←→ AlAs)).

Figure 13 gives D(q) for the systems considered in the previous figure. The behaviour
of the I system is similar to that seen for the I systems in the Fibonacci and Thue–Morse
structures, although the +∞ limit is higher in the Rudin–Shapiro case. The behaviour of the II
system is similar to that of the Thue–Morse case, although the +∞ limit is reached earlier in
the Rudin–Shapiro case. The difference between the +∞ limits of the I and II cases is larger
than for the Fibonacci and Thue–Morse structures.

The conclusions reached when studying elastic waves in quasiregular systems are similar
to those obtained for polar optical modes in Fibonacci heterostructures [48]. The model
employed in [48] was a realistic one, taking full account of all couplings at any value of
κ [105, 106], including the electrostatic potential and vibrational amplitudes.

5. Conclusions; open questions

Quasiregular systems are attractive and intriguing, and a great deal of literature has been
generated.

The mathematical analysis can be very useful for providing formal guidance, but until
now has been restricted to simple problems with 2 × 2 transfer matrices. To our knowledge
there is no trace map available for a higher-rank transfer matrix, which is necessary to cover
many physical models involving more than one amplitude. Further work on this subject is
needed.

Many studies with ‘simple’ models have been made which appear to exhibit some self-
similarity. However, trifurcation is simply a qualitative feature, and a property needs precise
adequate concepts for its definition and well defined parameters for its quantitative description.
All that is known from general theory is

(i) that a self-similar object must be fractal and
(ii) that in multifractal spectra there are different inherent scales, but this has not been so far

translated into useful concepts for analysing the situation in morphological terms.

All this leaves the field open for numerical experiments in ‘simple’ and ‘real’ systems, in
order to clarify some relevant issues.
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The study of elastic waves in quasiregular systems can be seen as an economical approach
to the study of ‘real’ quasiregular systems. It provides us with a kind of parallel of the one-
dimensional ‘simple’ systems (the transverse elastic waves) and with a more complicated
situation without analogue in the ‘simple’ systems (the sagittal elastic waves).

In this way it has been found that the frequency spectra exhibit the usual pattern of primary
and secondary gaps and they have multifractal character. It has also been seen that there is
no symptom of anything resembling a self-similar pattern of trifurcations for the different
generations of quasiregular systems studied [46–48, 50, 52–54].

These results are all in line with the remark stressed in [29] that fractal character and
self-similarity are properties of a fundamentally different nature which need not always
be associated, except for eigenvalue problems with the simplest mathematical structure.
The fractal character is a more basic topological property: it appears quite generally as
a consequence of the quasiregular geometrical structure and it admits a precisely defined
quantitative measure. The self-similarity is an essentially different property of a morphological
nature for which precise quantitative definitions appear to be generally lacking, except for the
simplest ideal cases, and even taken as a qualitative concept it is usually loosely defined and
often remains largely a matter of visual appreciation.

The influence of the boundary conditions (periodic or stress-free types) does not seem to
be very important beyond the appearance of localized modes in the primary and secondary
gaps in the case of the stress-free boundary conditions. In all the cases studied it has been seen
that D(q) varies with q, thus indicating that the spectrum is not only fractal, but multifractal
and therefore there are different scaling factors. This rules out strict self-similarity, although
some partial results, partially considered, might have a self-similar appearance.

The study of the sagittal elastic waves has shown that the spectrum fragmentation will
not appear in situations where wave mixing is quite strong, such as that occurring for arbitrary
propagation directions in anisotropic crystals [46].

It has also been seen that the frequency spectra of Fibonacci and Thue–Morse systems
have many similarities. On the other hand the Rudin–Shapiro systems, not covered by the
mathematical theorems [59,65] for ‘simple’ models, present important differences with respect
to the former systems and leave many questions unanswered.

It must be stressed that while many theoretical studies have been performed, not much
experimental information is available on quasiregular systems.

Possible applications of quasiregular systems as frequency-doubling devices have been
noted [56,107–111]. It is clear that more work on the properties of ‘real’ quasiregular systems
is still needed.
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